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ABSTRACT

In the paper, an efficient VLSI architecture for a 8x 8 two-
dimensional discrete cosine transform and inverse discrete cosine
transform (2-D DCT/IDCT) with a new 1-D DCT/IDCT
algorithm is presented. The proposed new algorithm makes all
coefficients are positive to simplify the design of multipliers and
the coefficients have less round-off error than Lee’s algorithm [1].
For computing 2-D DCT/IDCT, the row-column decomposition
method is used, and the design of 1-D DCT/IDCT requires only 9
multipliers and 21 adders/subtractors. This chip is synthesized with
0.6 1 m standard cell library and 1P3M CMOS technology, and it
can be operate up to 100MHz.

1. INTRODUCTION

The DCT is widely used in video coding and image compression
such as videoconference and HDTV [2][3]. The fast algorithms for
computing 2-D DCT/IDCT can be divided into two classes: (1)
The row-column decomposition methods [4][5]. These methods
separate the 2-D DCT/IDCT into two 1-D DCT/IDCT with a
transpose memory. These use 1-D fast DCT/IDCT algorithm to do
the row processing and sent the results into a transpose memory to
do the row column exchange, and then using 1-D fast DCT
algorithm to do the column processing; (2) The not-row-column
decomposition methods [6]. These methods direct use the 2-D
DCT/IDCT algorithm to computing 2-D DCT/IDCT. These need
less computing stages but cost much more hardware. Therefore,
these are more suitable for software 1mplememat10n than hardware
implementation.

Our implementation of a 8x 8 2-D DCT/IDCT chip use the row-
column decomposition method. The most efficiency algorithms for
computing 1-D DCT/IDCT are Lee’s [1] and Hou’s[7]. Hou’s
algorithm has less round-off error than Lee’s algorithm [8]{9], but
some coefficients are positive and some are negative. Generally, if
A and B are positive, the design of Ax B is easier than Ax (-B).
Thus, we present a new algorithm that makes all the coefficients
positive cosine forms to simplify the multiplier designs and have
less round-off error than Lee’s.

2. THE FAST DCT ALGORITHM
The normalized 1-D N-point DCT is defined as foliow:
7 = LCU-Elxi«cos Githes - U=0~N-=1 §)]

N
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where
C, =/ﬁ’ for u=0
c, =1 for u=0~N-I
For simplicity, we neglect the scaling factor [%{C, , then
Equation (1) can be written as
:gxi-cos%)—“i, u=0~N-1 (2)

In the following, it is assumed that the N is a power of 2. Let
u=2u and u=2u+l toseparate Equation (2) into even and
odd index forms, we have the even index form as

NZ]X .cos (2|+1)2un
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=
In Equation (4) and (5), when u=0, it implies Z'\=Z'_ . If we

add Equation (4) and (5) with the trigonometric formula

cos(oc+B)+ cos(o.—B) = 2cosacosB (6)
we can get
" ' )
z 2u+l T =Z 2u+\ +Z 2u-)
_ (2i+l)m (2i+1)2un
= _Zoxi 200857 COS~
i
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Equation (3) can be written as
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T‘y—l . .
7= i [x; +xy_1i]-cos (zzlzr%m ®)

i=0

From

cos———lz(N—;;,')”]" = COS[N———(Z;:)K_|= —cos——(z'z:)" (10)
and Equation (8), Equation (7) becomes

N/ ) »

YASRES é, [Xi ‘XN-l—i]'ZCOS(—Z‘;Nﬂ“COS —‘7—‘<22‘(le) (1)
We define

g =X Xy, 1=1~-1 (12)

h, =[x, — Xy ] 2c0sERE | i=1~ -1 (13)
then Equation (9) and (11) becomes

N—v“I N
G, =2, = Eﬂ gi~cos%:—‘)ﬂ, u=1~%-1 (14)
2_1 i+])um
H,=2",.,= 3 h; cos5xr~. u=1~%-1 (15)

i=0
Equation (14) and (15) are both (N/2)-point DCT, therefore, based
on the formations derive from above, Equation (14) and (15) can
recursively compute until N=2. The signal flow graph for a 8x 8
DCT/IDCT with the scaling factor is shown in Figure 1. Because
the DCT is an orthogonal transform, the signal flow graph for the
IDCT is just the inverse of the DCT.
1IDCT

DCT < -

|

2Cy

<, \ o Z
J/NE AN ¢

“ 716 13 7,

YATWAED-=EHANA
where C,,, = cos(k % /n}

Figure 1. The DCT/IDCT signal flow graph

3. THE SIMPLIFIED OF SIGNAL FLOW
GRAPH

] i
sils
/

In Figure 1, the DCT/IDCT signal flow graph requires 13

multipliers and 29 adders/subtractors. In the following, we will

" simplify the DCT/IDCT signal flow graph. The simplified flow is

as follow:

® To multiply each row of the signal flow graph in Figure 1 with
(2cos(1/(4 7 Y)Y, it can save one multiplier, which is shown in
Figure 2.

® Asshown in Figure 2, both the parts enclosed by dash line and
real line are the same. If we take away one of them and
pipeline the signal flow graph appropriately, the hardware can
save eight adders/subtractors and three multipliers. Finally, the
hardware comparison is shown in Table 1.

where C, | = cos(kz /n)

Figure 2. The simplified of DCT/IDCT signal flow graph

before simplify | after simpilfy
multipliers 13 8
| adders/subtractors 29 21

Table 1. The hardware comparison
In order to pipeline the signal flow graph appropriately, Figure 3
(Figure 4) shows the timing flow of DCT (IDCT). where the
number of ( ) means the timing flow along path 1 and the number
of [ ] means the timing flow along path 2.
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Figure 3. The timing flow of DCT
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Fbigure 4. The timing flow of IDCT
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4. THE VLSI IMPLEMENTATION

Because 2-D DCT/IDCT is a separable transform, it can be
implemented by series of 1-D DCT/IDCTs with a transpose
memory. Figure 5 shows the 2-D DCT/IDCT is implemented only
one 1-D DCT/IDCT unit with a transpose memory.

Transpose
Memory

Figure 5. The implementation of 2-D DCT/IDCT

Because the direction of signal flow of DCT and IDCT are
different, each pipelined stage must include a lot of multiplexes. In
order to solve the complicated routing, we make the DCT/IDCT
be placed as sandwich form as shown in Figure 6. Therefore, no
matter to process the DCT or the IDCT, the wires are routed only
through the control unit.

—
r Upper DCTADCT Processor Unit

DCT ,
SRl SR SRR SR

Control Unit
{Multiplexcs)

Down DCT/IDCT Proccssor Unit
IDCT
—

Figure 6. The placement of DCT/IDCT
Figure 7 shows the data format of the DCT/IDCT chip. The
DCT/IDCT chip requires seven kinds of the multiplier coefficients.
We use Booth coding [10] to reduce the numbers of nonzero bits
of the multiplier coefTicients as shown in Table. 2.
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Figure 7. The data format of DCT/IDCT

ing in{

effiients I decimal ingny 3

a2 2cos(pi/i6) { 1.96157 J 011111 01100010 100 10.0000 1010 0010 4
bY 2cos(pi/3) 847761 01,1101 100] 0000 Oli 10,0010 100} 6000 4
cf 2cos(3pi/16) } 1.66294 | 01.1010 1001 1011 011]  01.1010 1016 6100
d}1/]2cos(pi/4
¢
f

0.70711}00,1011 0101 0000 100] 001011 9101 0000 5
2c0s(5pi/16) | 111114010001 110001110 01,0010 0100 10 3
2¢cos(3pi/8) } 0.76537 1 00.1100 00 10 00.1100 0100 0001, 4
2c0s(7pi/16)] 0.39018 1 00,0110 0011 1110 001} _ 00,0110 01000010 4

Table 2. The coefficients of DCT/IDCT

A 6-bitx 6-bit multiplier implementation uses the Wallace tree

architecture [11] to simplify is shown in Figure 8. For example,
Figure 9 shows a multiplier with the coefficient which is equal to
2cos( 7 /16). It is important that to simplify the partial product and
sign-bit extension of multiplier. Our simplified flow is as follow:

® In Figure 10, let “dddd” be the sign-bit extension, the “dddd”
can be represent as “d” added with a “all-ones compensation
vector”. Using the method shows in Figure 10, the sign-bit
extensions in Figure 9 are instead of “all-ones compensation
vector”, and can be collected beforehand.

®  Use the combine skill of sign-bit extension shows in Figure
11, the partial product of multiplier in Figure 12 can reduce
one row.

® In Figure 13, the Wallace Tree architecture is used to
simplify the partial products to two rows. The two rows just

require fast adder to generate the final product.
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Figure 8. A 6-bitx 6-bit multiplier simplified with Wallace Tree
architecture
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Figure 10. The eliminated of sign-bit extension
1
+ O 1 1_d
a=0 0 1 1 1
d=1__l1 0 o o
d=torlld d d d

Figure 11. A combine skill of sign-bit extension
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Figure 12. The first time simplified of multiplier
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Figure 13. The second time simplified of multiplier
S. THE SIMULATION RESULT

The circuit modules of the chip are designed by verilog HDL. The
verilog HDL programs are synthesized by the Synopsys tool with
the 0.6 £ m Compass standard cell library. Figure 14 shows the
layout which use the Cadence Silicon Ensemble tool to do the
automatically place and route with 0.6 £ m 1P3M technology. The
core area is about 3.916x 3.916mm’, and the chip can be operate
up to 100MHz. The features of our DCT/IDCT chip are shown in
Table 3, and the comparisons with other chips are shown in Table
4.

5500 80 _ ..

Upper DCT/IDCT Processor Unit

Contorl Unit
(Mustiplex, Decoder, Counter, etc.)

Transpose Memory

Down DCT/IDCT Processor Unit

§500 80

Figure 14. The Layout of the 2-D DCT/IDCT

9-bit (DCT), 12-bit (IDCT)
12-bit (DCT), 9-bit IDCT)

Input data format
Output data format

Performance of gate level simulation 8 ns (125 MHz)
Performance of transistor level simulation 10 ns (100 MHz)
Core area 39165 %3915 mm’
Chip area 55008 x 5.5008 mm’
Gate count 38,973.75
Transistor count 155,895

Technology Cell Library Compass 0.6 # m Stadard Cell Libra
Process Technology TSMC 1P3M CMOS

Table 3. The feature of the 8x 8 2-D DCT/IDCT chip

Block Function |7 o4 Transistors| Max, Speed (MH.
21 8x8 DCT/IDCT 1.2 320,000 50
3] 8x8 DCT/IDCT 0.8 180,000 50
_I51 8x8 DCT 0.8 147,839 50
{61 88 IDCT 0.6 402,048 71
urs 8x8 DCT/IDCT 06 155,895 100

Table 4. The comparison of DCT/IDCT chips

6. CONCLUSION

In the paper, we propose an efficient architecture to implement a
2-D DCT/IDCT with a new algorithm. The proposed new
algorithm makes all coefficients are positive to simplify the design
of multipliers. The efficient architecture for the proposed
algorithm requires only 9 multipliers and 21 adders/subtractors.
The transistor count of the designed circuit is less than 160,000. In
Table 4, the simulation result shows the performance of our chip is
better than other chips, and is suitable for high-speed application
such as HDTV.
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